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Recent investigations in nonlinear sciences show that not only hyperbolic but also mixed dynamical systems
may exhibit exponential relaxation in the chaotic regime. The relaxation rates, which lead the decay of
probability distributions and correlation functions, are related to the classical evolution resolvent �Perron-
Frobenius operator� pole logarithm, the so-called Pollicott-Ruelle resonances. In this Brief Report, the leading
Pollicott-Ruelle resonances are calculated analytically for a general class of area-preserving maps. Besides the
leading resonances related to the diffusive modes of momentum dynamics �slow rate�, we also calculate the
leading faster rate, related to the angular correlations. The analytical results are compared to the existing results
in the literature.

DOI: 10.1103/PhysRevE.77.027201 PACS number�s�: 05.45.Ac, 05.45.Mt, 05.20.�y

I. INTRODUCTION

It is well-known that for systems exhibiting chaotic dy-
namics, precise long-time predictions of individual trajecto-
ries are impossible. It is natural, therefore, to investigate the
statistical properties of these systems. In this sense, the time
evolution of the probability densities of trajectories �n, ruled
by the Perron-Frobenius �PF� operator U as �n+1=U�n, have
been extensively studied �1,2�.

Due to Liouville’s theorem, U can be represented by a
unitary operator in a Hilbert space. Consequently, its resol-
vent

R�z� =
1

z − U
=

1

z
�
j=0

�

Ujz−j �1�

is singular on the unit circle in the complex z plane, and the
matrix elements of R�z� are discontinuous there. The sum in
Eq. �1� is convergent for �z��1 and has an analytical exten-
sion across the cut into the first Riemann sheet, which exhib-
its a set of singularities known as Pollicott-Ruelle �PR� reso-
nances �3,4�. A purely discrete spectrum represents regular
dynamics, whereas chaos is represented by a continuous
spectrum. To identify the PR resonances it is necessary to
analytically continue the resolvent across the continuous
spectrum of U from the outside to the inside of the unitary
circle. These resonances characterize the irreversible behav-
ior of chaotic dynamics �1,5�. In particular, the nontrivial
�z�1� maximal PR resonance leads the exponential decay of
distribution and correlation functions �6,7�.

The PR resonances have attracted considerable attention
not only in classical dynamics but also in quantum systems
�8�, and some numerical and semianalytical schemes were
recently developed to calculate them. Blum and Agam pro-
posed a variational method to locate the leading resonances
�9�. Although their results describe the apparent formation of
a leading quartet for two particular map cases, verified by
respective numerical diagonalization of U, the leading reso-
nance calculated diverges for a set of values of K in the
standard map case when this approach breaks down. Florido
et al. extended this variational approach in a class of numeri-

cal methods in which memory function and filter diagonal-
ization techniques are utilized by means of interpolating ex-
ponentials �10�. Usually, there are two standard ways to
calculate the PR resonances: one is based on the numerical
diagonalization of the operator U, for which the resonances
are directly calculated from its eigenvalues �9,11,12�; the
other, through the zeros of the classical Ruelle zeta function,
is derived from the trace of the resolvent of U �1,2�. In the
last case, there are analytical calculations of these resonances
for some hyperbolic systems �for which this formalism is
rigorous� such as the multibaker map �1�, geodesic motion in
billiards of constant negative curvature �13�, and hard-disk
scatterers �1�. On the other hand, many physically realistic
systems are mixed, and analytical procedures to determine
resonances for these cases are thus in demand.

The motivation of the present Brief Report is to calculate
analytically the leading PR resonances for slow �diffusive�
and faster modes of dynamics for the general class of two-
dimensional area-preserving maps:

In+1 = In + Kf��n� ,

�n+1 = �n + c��In+1� mod 2� , �2�

defined on the cylinder −���	�, −�	 I	�. Here f��� is
the impulse function, ��I�=��I+2�r� is the rotation number,
c and r are real parameters, and K is the stochasticity param-
eter. This map is commonly called the radial twist map �14�
periodic in momentum variable I. The specific linear rotation
number �LRN� case c��I�� I for which f���=sin � repre-
sents the Chirikov-Taylor standard map �15�, a paradigm of
Hamiltonian chaos �14�. LRN maps are periodic because I
can be replaced by I mod 2�. On the other hand, nonperiodic
rotation numbers can be considered in the limit r→� �16�.

II. PROJECTION OPERATORS

A usual way to determine the leading PR resonance is to
evaluate the application Un for large values of the time n
when only the highest resonance survives, as it occurs for the
equilibrium statistical mechanics of lattice systems. Let us
consider the analysis of the resolvent �1� for which Un can be
expressed as �CdzR�z�zn=2�iUn �5�. The spectrum of U is
located on the unit circle C around the origin in the complex*roberto.venegeroles@ufabc.edu.br
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z plane or inside it. Thus the contour of integration is a circle
lying just outside the unit circle. In order to evaluate Un, a
very effective method based on the projection operator tech-
niques can be used �5,18�. In this method, we consider two
mutually orthogonal idempotent operators P and Q:

1 = P + Q, P2 = P, Q2 = Q, PQ = QP = 0, �3�

where 1 represents the identity operator. These operators de-
compose the resolvent in the following nontrivial form:

1

z − U
= �P + QC�z�P�

1

z − PE�z�P
�P + PD�z�Q� + QP�z�Q ,

�4�

where the operators P�z�, E�z�, C�z�, and D�z� are the dis-
crete time version of the Brussels formalism �17�, defined by

QP�z�Q = Q
1

z − QUQ
Q , �5�

PE�z�P = PUP + PUQP�z�QUP , �6�

QC�z�P = QP�z�QUP , �7�

PD�z�Q = PUQP�z�Q . �8�

A recent proof of Eqs. �4�–�8� can be found in �18�.
The matrix representation of the PF operator U for Eq. �2�

in Fourier space �m ,q� is given by

	m,q�U�m�,q�


= �
m�
� dq��

l


�lr−1 − q� + q�Gl�r,mc�Jm−m��− Kq�� ,

�9�

obtained in �7�, and the Fourier decompositions of the ��I�
and f��� functions are

Gl�r,x� =
1

2�
� d� exp�− i�x��r�� − l��
 , �10�

Jm�x� =
1

2�
� d� exp�− i�m� − xf����
 . �11�

III. SLOW RELAXATION RATE

The leading PR resonances related to diffusive modes of
the momentum variable I for Eq. �2� correspond to the
relaxation rate of PUnP�exp�n��q�� for n�1 and
P��0,q
. The diffusion coefficient D is then calculated by
D= �− �1 /2��q

2��q��q=0. Applying P on the two sides of
Eq. �4�, the projection of the PF operator Un can be written
as

PUnP =
1

2�i
�

C

dz
zn

z − �
j=0

�

z−j
 j�q�

, �12�

where the memory functions 
 j�q� are given by �7�


0�q� = J0�− Kq� , �13�


1�q� = �
m

J−m�− Kq�Jm�− Kq�G0�r,mc� , �14�


 j�2�q� = �
�m


�
��
†

J−m1
�− Kq�Jmj

�− Kq�G�1
�r,m1c�

� �
i=2

j

G�i
�r,mic�Jmi−1−mi�− K�q + r−1�

k=1

i−1

�k�� .

�15�

Hereafter, the following convention will be used: the set of
wave numbers m and �m
= �m1 , . . . ,mj
 can only take non-
zero integer values, whereas the set of wave numbers ��
†

can take all integer values, including zero, and the super-
script denotes the constraint �i=1

j �i=0.
The integral �12� can be solved by method of residues

and its poles are evaluated by the well-known Newton-
Raphson method: the zeros of an equation h�z�=0 are
calculated iteratively by zn+1=zn−h�zn� /h��zn�, where h�z�
�z−� j=0

N z−j
 j�q� assumes the truncated form of the denomi-
nator of Eq. �12�. First, we introduce the abbreviations Mq
�� j=0

N 
 j�q� and Nq�� j=1
N j
 j�q�. Notice that, taking into

account the null drag condition �d�f���=0 �7�, we have

0�q→0�=1+O�q2�. In the general case, we have

 j�1�q→0�=O�q2�. For q=0, z*=1 is the only root of h�z�.
This trivial pole is related to the equilibrium state found for
m=m�=q=0. For q→0, the Newton-Raphson sequence of
iterated roots will be given by z0=1, z1=z2= ¯ =z�

=Mq+O�q4�. For any choice of N�1, it is easy to see that
z��N� is a root of the h�z�, thus z*=limN→�z��N� is the lead-
ing pole of Eq. �12�. Up to fourth order in q this pole can be
considered simple because PE�z*�P=z*+O�q4�. Performing
the complex integration of Eq. �12� for n�1 we obtain the
leading PR resonance ��q� �7�:

��q� = ln �
j=0

�


 j�q� + O�q4� . �16�

The relaxation rate �16� is called slow because ��q�=O�q2�
for small wave number q.

IV. FASTER RELAXATION RATE

Likewise the leading resonance corresponding to the dif-
fusive modes of the momentum variable I leads the exponen-
tial relaxation of distribution functions, leading angular reso-
nances have an important role in the exponential decay of
angular correlation functions,

Cuv�n� = 	u�Un�v
 � e−n�, �17�

in the chaotic regime for sufficiently large n, where u
and v are two of any observables at the same instant of time.
Let us consider the analysis of the transition elements
Q1UnQ�	m ,0�Un�m� ,q�
. Noting that Q1Q=Q1, the expan-
sion of Q1R�z�Q can be written as
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Q1
1

z − U
Q = �

i=1

�

z−�i+1��i, �18�

where �i�Q1UiQ. The analysis becomes simpler for the
LRN case, for which we have the following first three �i
coefficients:

�1 = �
m�

Jm−m��− mK� , �19�

�2 = �
�

Jm−��− mK��
m�

J�−m��− �m + ��K� , �20�

�3 = J2m�− mK��
m�

J−�m+m���mK� + �m�K� + O�J3� ,

�21�

where

�m�K� � Jm
2 �− mK� + J0�− mK�Jm�− mK�

+ �
m�

Jm−m��− mK��Jm+2m��− �m + m��K�

+ Jm��− �m + m��K�
 . �22�

In the calculation of Eqs. �19�–�21�, as well as in the calcu-
lations that follow, it is crucial to consider the following
addition rule:

�
m�

Jm−m��x� = �
�

Jm−��x� − Jm�x� = 1 − Jm�x� . �23�

Notice that, including l=0, we have �l exp�−ilt�
=2��l
�t−2�l�. Hence the identity �23� holds due to
��J��x�=exp�ixf�0��=1 for f�0�=0. Such a result was only
known for the particular case of Bessel functions of the first
kind by means of its generating function.

For sufficiently high values of K we expect that the coef-
ficients �i become negligible as i increases. Thus, in a first
approximation, we can truncate the right-hand side of Eq.
�18� at i=3 and rewrite it in the following rational form:

�1z2 + �2z + �3

z4 �
z−4

�0 + �1z + �2z2 , �24�

whose coefficients �i are given in terms of �i as

�0 =
1

�3
, �1 = −

�2

�3
2 , �2 =

�2
2

�3
3 −

�1

�3
2 . �25�

The right-hand side of Eq. �24� is, in a first approximation,
the analytical extension of the series representation of
Q1R�z�Q, valid in the chaotic regime. The non-null poles of
the projected resolvent �24� form the leading resonances of
the PF operator Q1UQ. First, we have �1=1−Jm�−mK� due
to Eq. �23�, thus �1�0 unless K=−1 for the particular case
of the sawtooth map f���=�. Considering �1=1+O�J� as
the dominant term, �2 �for �=m�=−m� and �3 must be the
O�J� perturbative terms of the �-expansion �24�. Neglecting
only O�J3� terms on the �i coefficients, the poles of the
rational form �24� will be given by

z� = ���3

�1
−

1

2

�2

�1
+ O�J3/2� . �26�

The ratio �2 /�1 can be considered only as J2m�−mK�, and
its O�J2� terms can be neglected. On the other hand, the ratio
�3 /�1�J2m�−mK� must be considered up to O�J2� terms,
given O�J1/2� and O�J� corrections. Thus the leading angu-
lar resonance, represented in the exponential form as
�z�=exp�−��, will be

� = − ln max
m
��J2m�− mK� + �m�K� �

1

2
J2m�− mK�� ,

�27�

with �m�K� given by Eq. �22�. Note that, for odd impulse
function f���, the leading resonance �27� is invariant under
the change m→−m.

For very large values of K, the leading resonance �27�
tends to the following value:

�� = − ln max
m

��J2m�− mK�� , �28�

obtained in a different way by Khodas et al. for the standard
map particular case �6�. It is important to check the limits of
validity of each approximation and its respective adequacy to
the numerical values existing in the literature. In Fig. 1 we
compare, for the standard map, the resonance �27� with its
asymptotic value �28�. For sufficiently large times, they cal-
culate numerically the correlation �17� for u and v propor-
tional to exp�im�� and for some combinations of modes
�m ,m�
, where Cuv�Cm,m� in this choice. Once the reso-
nance �27� is dominated by initial mode m=1, we select C1,1
and C1,2 as the best simulated correlations. However, these
numerical values have only a qualitative character for sake of
comparison, since resonance �27� leads the decay of correla-
tions only for very large times, when the numerical signal is
too weak �6�. Moreover, the precise composition of the ob-

FIG. 1. Theoretical leading resonance � �solid line� calculated
for the standard map compared with its asymptotic value �� �dotted
line� and several numerical calculations. Here, ��� and ��� repre-
sent the resonances calculated from C1,1 and C1,2 correlations, re-
spectively, by Khodas et al. �6�, ��� represents the resonances cal-
culate by Blum and Agam �9�, and ��� is the intermediary value
calculated by Florido et al. �10�.
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servable v as a possible superposition of modes �mi�
, for
which C1,v decay through Eq. �27�, is not known. On the
other hand, we also include the two values of leading reso-
nances calculated numerically by diagonalization of U for
K=10 and 13 by Blum and Agam �9�, in addition to the
leading intermediary value calculated by Florido et al. for
K=10 �assumed here between z=0.672 and 0.715� �10�. By
comparing all these results, the theoretical result �27� gives a
better qualitative fit with the numerical values even for high
values of K and, besides, it reveals a more intrincated struc-
ture of peaks for the maximal resonance.

The sawtooth map f���=� is the only particular LRN case
for which the perturbative scheme presented above breaks
down �19�. This occurs in such a case due to Jm�x�=1 for
m=x and integer values of K. For example, besides �1=1 for
all integers K�−1, �2 can be rewritten as

�2 = 1 − �
�

Jm−��− mK�J��− �m + ��K� . �29�

For integer K, the sum in the right-hand side of Eq. �29�
vanishes unless −K= �

m+� = m−�
m , which gives �� /m�=g* or

�� /m�=g*
−1, where g*= ��5−1� /2 is the golden mean. Hence

we also have �2=1 for all integers K. This suggests that
�i=1 for almost all integers K. If this hypothesis is true, we
then have as an analytical continuation of the resolvent for
�z��1,

Q1
1

z − U
Q =

1

z2�
j=0

�
1

zj =
1

z�z − 1�
, �30�

according to Eq. �18�. Thus z=1 corresponds to the invariant
density and all the other resonances are infinitely degener-
ated at z=0. This particular result was demonstrated by Sano
for all positive integers K by using the Fredholm determinant
of U �12�.

V. CONCLUDING REMARKS

In conclusion, we have presented a method to determine
analytically leading Pollicott-Ruelle resonances which is ap-
plicable to a general class of area-preserving maps, including
mixed systems. Such resonances are obtained through the
resolvent of the PF operator by using projection operator
techniques. In particular, we calculate the leading resonance
related to the slow modes of relaxation, which corresponds
to the diffusive process, as well as the leading resonance
related to the faster modes of relaxation. In this last case, our
perturbative analysis was performed only for systems with
linear rotation numbers, although it can be similarly applied
for nonlinear ones.

The analytical results obtained here have been compared
with theoretical and numerical calculations existing in the
literature. The resonance �27� was calculated in a systematic
way in which correction terms of order O�J� produce a more
intricate structure of peaks for the standard map case even
for high values of K, as can be seen in Fig. 1. Despite the
absence of estimates of errors in the numerical results, the
agreement with the theoretical result �27� is reasonable. We
have also investigated particular characteristics of the saw-
tooth map that are incompatible with the perturbative ap-
proach developed in the Sec. IV. Our analysis points toward
the accordance between our hypothesis and the results pre-
sented in �12�.
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